\(\int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx\) [181]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 160 \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {56 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d}-\frac {5 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a^2 d}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d}+\frac {56 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac {3 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {\cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

[Out]

56/5*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-5*(cos(1/2*d*
x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+56/15*cos(d*x+c)^(3/2)*sin(d*
x+c)/a^2/d-3*cos(d*x+c)^(5/2)*sin(d*x+c)/a^2/d/(1+cos(d*x+c))-1/3*cos(d*x+c)^(7/2)*sin(d*x+c)/d/(a+a*cos(d*x+c
))^2-5*sin(d*x+c)*cos(d*x+c)^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2844, 3056, 2827, 2715, 2720, 2719} \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=-\frac {5 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a^2 d}+\frac {56 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d}-\frac {3 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{a^2 d (\cos (c+d x)+1)}+\frac {56 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{15 a^2 d}-\frac {5 \sin (c+d x) \sqrt {\cos (c+d x)}}{a^2 d}-\frac {\sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[In]

Int[Cos[c + d*x]^(9/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

(56*EllipticE[(c + d*x)/2, 2])/(5*a^2*d) - (5*EllipticF[(c + d*x)/2, 2])/(a^2*d) - (5*Sqrt[Cos[c + d*x]]*Sin[c
 + d*x])/(a^2*d) + (56*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(15*a^2*d) - (3*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(a^2*
d*(1 + Cos[c + d*x])) - (Cos[c + d*x]^(7/2)*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2844

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 3056

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rubi steps \begin{align*} \text {integral}& = -\frac {\cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac {\int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (\frac {7 a}{2}-\frac {11}{2} a \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{3 a^2} \\ & = -\frac {3 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {\cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac {\int \cos ^{\frac {3}{2}}(c+d x) \left (\frac {45 a^2}{2}-28 a^2 \cos (c+d x)\right ) \, dx}{3 a^4} \\ & = -\frac {3 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {\cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac {15 \int \cos ^{\frac {3}{2}}(c+d x) \, dx}{2 a^2}+\frac {28 \int \cos ^{\frac {5}{2}}(c+d x) \, dx}{3 a^2} \\ & = -\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d}+\frac {56 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac {3 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {\cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac {5 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a^2}+\frac {28 \int \sqrt {\cos (c+d x)} \, dx}{5 a^2} \\ & = \frac {56 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d}-\frac {5 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a^2 d}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d}+\frac {56 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac {3 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {\cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.94 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.92 \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {\sqrt {\cos (c+d x)} \csc ^3(c+d x) \left (-240-1186 \cos (c+d x)+340 \cos (2 (c+d x))+207 \cos (3 (c+d x))-20 \cos (4 (c+d x))+3 \cos (5 (c+d x))+600 \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right ) \sin ^2(c+d x)^{3/2}+1792 \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {5}{2},\frac {7}{4},\cos ^2(c+d x)\right ) \sin ^2(c+d x)^{3/2}\right )}{120 a^2 d} \]

[In]

Integrate[Cos[c + d*x]^(9/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

(Sqrt[Cos[c + d*x]]*Csc[c + d*x]^3*(-240 - 1186*Cos[c + d*x] + 340*Cos[2*(c + d*x)] + 207*Cos[3*(c + d*x)] - 2
0*Cos[4*(c + d*x)] + 3*Cos[5*(c + d*x)] + 600*Hypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2]*(Sin[c + d*x]^2
)^(3/2) + 1792*Cos[c + d*x]*Hypergeometric2F1[3/4, 5/2, 7/4, Cos[c + d*x]^2]*(Sin[c + d*x]^2)^(3/2)))/(120*a^2
*d)

Maple [A] (verified)

Time = 6.38 (sec) , antiderivative size = 283, normalized size of antiderivative = 1.77

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (96 \left (\cos ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-352 \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+120 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-150 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-336 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+266 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-135 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+5\right )}{30 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(283\)

[In]

int(cos(d*x+c)^(9/2)/(a+cos(d*x+c)*a)^2,x,method=_RETURNVERBOSE)

[Out]

-1/30*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(96*cos(1/2*d*x+1/2*c)^10-352*cos(1/2*d*x+1/2*c)
^8+120*cos(1/2*d*x+1/2*c)^6-150*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1
/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3-336*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)
*cos(1/2*d*x+1/2*c)^3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+266*cos(1/2*d*x+1/2*c)^4-135*cos(1/2*d*x+1/2*c)^2+
5)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2
*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 288, normalized size of antiderivative = 1.80 \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {2 \, {\left (6 \, \cos \left (d x + c\right )^{3} - 8 \, \cos \left (d x + c\right )^{2} - 94 \, \cos \left (d x + c\right ) - 75\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 75 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 75 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 168 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 168 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{30 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/30*(2*(6*cos(d*x + c)^3 - 8*cos(d*x + c)^2 - 94*cos(d*x + c) - 75)*sqrt(cos(d*x + c))*sin(d*x + c) - 75*(-I*
sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin
(d*x + c)) - 75*(I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, c
os(d*x + c) - I*sin(d*x + c)) - 168*(-I*sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierst
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 168*(I*sqrt(2)*cos(d*x + c)^2 + 2
*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*
x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(9/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {9}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(9/2)/(a*cos(d*x + c) + a)^2, x)

Giac [F]

\[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {9}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(9/2)/(a*cos(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{9/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int(cos(c + d*x)^(9/2)/(a + a*cos(c + d*x))^2,x)

[Out]

int(cos(c + d*x)^(9/2)/(a + a*cos(c + d*x))^2, x)